A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity.
نویسندگان
چکیده
Despite the key role that pattern recognition receptors (PRRs) play in regulating immunity in plants and animals, the mechanism of activation of the associated non-arginine-aspartate (non-RD) kinases is unknown. The rice PRR XA21 recognizes the pathogen-associated molecular pattern, Ax21 (activator of XA21-mediated immunity). Here we show that the XA21 juxtamembrane (JM) domain is required for kinase autophosphorylation. Threonine 705 in the XA21 JM domain is essential for XA21 autophosphorylation in vitro and XA21-mediated innate immunity in vivo. The replacement of Thr(705) by an alanine or glutamic acid abolishes XA21 autophosphorylation and eliminates interactions between XA21 and four XA21-binding proteins in yeast and rice. Although threonine residues analogous to Thr(705) of XA21 are present in the JM domains of most RD and non-RD plant receptor-like kinases, this residue is not required for autophosphorylation of the Arabidopsis RD RLK BRI1 (brassinosteroid insensitive 1). The threonine 705 of XA21 is conserved only in the JM domains of plant RLKs but not in those of fly, human, or mouse suggesting distinct regulatory mechanisms. These results contribute to growing knowledge regarding the mechanism by which non-RD RLKs function in plant.
منابع مشابه
Rice XB15, a Protein Phosphatase 2C, Negatively Regulates Cell Death and XA21-Mediated Innate Immunity
Perception of extracellular signals by cell surface receptors is of central importance to eukaryotic development and immunity. Kinases that are associated with the receptors or are part of the receptors themselves modulate signaling through phosphorylation events. The rice (Oryza sativa L.) XA21 receptor kinase is a key recognition and signaling determinant in the innate immune response. A yeas...
متن کاملAn ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity.
Cell-surface pattern recognition receptors (PRRs) are key components of the innate immune response in animals and plants. These receptors typically carry or associate with non-RD kinases to control early events of innate immunity signaling. Despite their importance, the mode of regulation of PRRs is largely unknown. Here we show that the rice PRR, XA21, interacts with XA21 binding protein 24 (X...
متن کاملCleavage and nuclear localization of the rice XA21 immune receptor
Plants and animals carry specific receptors that recognize invading pathogens and respond by activating an immune response. The rice XA21 receptor confers broad-spectrum immunity to the Gram-negative bacterial pathogen, Xanthomonas oryzae pv. oryzae upon recognition of a small protein, Ax21, that is conserved in all Xanthomonas species and related genera. Here we demonstrate that XA21 is cleave...
متن کاملThe Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characteriz...
متن کاملMicroreview Elucidation of XA 21 - mediated innate immunitycmi
In the early 1970s, the Xa21 gene from the wild rice species Oryza longistaminata drew attention of rice breeders because of its broad-spectrum resistance to diverse strains of a serious bacterial disease of rice in Asia and Africa, called ‘bacterial blight disease’, caused by the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). In 1995, we isolated the gene controlling this resist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 285 14 شماره
صفحات -
تاریخ انتشار 2010